Efficient classification using parallel and scalable compressed model and Its application on intrusion detection

نویسندگان

  • Tieming Chen
  • Xu Zhang
  • Shichao Jin
  • Okhee Kim
چکیده

In order to achieve high efficiency of classification in intrusion detection, a compressed model is proposed in this paper which combines horizontal compression with vertical compression. OneR is utilized as horizontal compression for attribute reduction, and affinity propagation is employed as vertical compression to select small representative exemplars from large training data. As to be able to computationally compress the larger volume of training data with scalability, MapReduce based parallelization approach is then implemented and evaluated for each step of the model compression process abovementioned, on which common but efficient classification methods can be directly used. Experimental application study on two publicly available datasets of intrusion detection, KDD99 and CMDC2012, demonstrates that the classification using the compressed model proposed can effectively speed up the detection procedure at up to 184 times, most importantly at the cost of a minimal accuracy difference with less than 1% on average.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A hybridization of evolutionary fuzzy systems and ant Colony optimization for intrusion detection

A hybrid approach for intrusion detection in computer networks is presented in this paper. The proposed approach combines an evolutionary-based fuzzy system with an Ant Colony Optimization procedure to generate high-quality fuzzy-classification rules. We applied our hybrid learning approach to network security and validated it using the DARPA KDD-Cup99 benchmark data set. The results indicate t...

متن کامل

A New Method for Intrusion Detection Using Genetic Algorithm and Neural Network

    The article attempts to have neural network and genetic algorithm techniques present a model for classification on dataset. The goal is design model can the subject acted a firewall in network and this model with compound optimized algorithms create reliability and accuracy and reduce error rate couse of this is article use feedback neural network and compared to previous methods increase a...

متن کامل

A New Method for Intrusion Detection Using Genetic Algorithm and Neural Network

    The article attempts to have neural network and genetic algorithm techniques present a model for classification on dataset. The goal is design model can the subject acted a firewall in network and this model with compound optimized algorithms create reliability and accuracy and reduce error rate couse of this is article use feedback neural network and compared to previous methods increase a...

متن کامل

MHIDCA: Multi Level Hybrid Intrusion Detection and Continuous Authentication for MANET Security

Mobile ad-hoc networks have attracted a great deal of attentions over the past few years. Considering their applications, the security issue has a great significance in them. Security scheme utilization that includes prevention and detection has the worth of consideration. In this paper, a method is presented that includes a multi-level security scheme to identify intrusion by sensors and authe...

متن کامل

A Hybrid Machine Learning Method for Intrusion Detection

Data security is an important area of concern for every computer system owner. An intrusion detection system is a device or software application that monitors a network or systems for malicious activity or policy violations. Already various techniques of artificial intelligence have been used for intrusion detection. The main challenge in this area is the running speed of the available implemen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Expert Syst. Appl.

دوره 41  شماره 

صفحات  -

تاریخ انتشار 2014